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Progressive deformation in anisotropic rocks 
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Abstract--Field observations show that the majority of crustal rocks possess a penetrative foliation defined by 
either compositional layering, preferred orientations of crystals, or both. Ductile deformation involving planar 
anisotropy of viscosity can be characterized by an anisotropy factor ~ = r/N hTs, the ratio of the bulk viscosities in 
pure and simple shear, respectively. This ratio of the normal and shear viscosities may be determined analytically 
if the anisotropy is resolvable in a multilayer sequence with individual laminae of isotropic viscosity. In that case, 
the resistance to normal compression will be largely controlled by the competent layers, whereas the resistance to 
shear is controlled by the soft layers. More specifically, the viscosities of the individual laminae add up like 
resistances in series and in parallel in the expressions for the normal and shear viscosities, respectively. 

The reorientation of the bulk stress within an anisotropic multilayer is systematically investigated for a range of 
anisotropy factors. The mode of progressive deformation is controlled only by the anisotropy factor and the 
orientation of the principal deviatoric stress. The rate of deformation can be scaled if the bulk normal viscosity 
and the magnitude of the principal deviatoric stress are also known. The results are illustrated in a series of 
nomograms showing the spectrum of strain and rotation histories possible in rock volumes deforming with planar 
anisotropy. It appears that with increasing anisotropy factor the deformation spectrum will narrow on simple 
shear, irrespective of the orientation of the background or bulk deviatoric stress axes. Plane strain and isochoric 
conditions are assumed throughout the analysis. 

INTRODUCTION 

IT ~S usually assumed that rock is isotropic in its mechan- 
ical response to a stress field at depths, allowing ductile 
flow by solid-state crystailoplastic creep. This assump- 
tion of isotropic flow keeps the analytical description 
simple, since the principal axes of strain-rate or 
incremental strain remain parallel to those of stress. It is 
then possible to predict from the viscosity and the 
orientation of the stress field which finite deformation 
may occur after a particular time, by integrating the 
velocity gradient equations. This procedure has been 
rationalized in a companion paper (Weijermars 1991), 
advancing previous studies on ductile, progressive 
deformation in isotropic rock (Ramberg 1975a,b, 
Pfiffner & Ramsay 1982). 

The limitation of this approach is that it is only 
applicable to isotropic rocks, whereas many natural 
rocks are mechanically anisotropic. For example, field 
observations show that most crustal rocks possess a 
penetrative foliation defined by either compositional 
layering, preferred orientation of crystals, or both. 
Modelling of the mantle suggests that, there also, com- 
positional layering may be maintained by stretching 
subducted heterogeneities into thin layers alternating 
with primordial mantle rocks of differerlt composition 
(All6gre & Turcotte 1986) ordevelopment of preferred 
crystallographic orientation (Christensen 1987, Nicolas 
1989, Ribe 1989). 

Previous investigations, discussed below, have shown 
that the constitutive relationship between stress and 

strain-rate in anisotropic rocks is different from that in 
isotropic rocks. This is because the viscosity--a scalar in 
isotropic media--becomes a tensor quantity in aniso- 
tropic flow in order to account for the directional vari- 
ation in the magnitude of the viscosity. Principal axes of 
stress no longer need to remain parallel to those of 
incremental strain or strain-rate. For example, defor- 
mation by progressive simple shear in isotropic rocks is 
maintained by a bulk stress with the major principal 
stress and strain-rate axes both oriented at 45 ° to the 
direction of shear. It is demonstrated here that in 
strongly anisotropic rocks the bulk stress may be 
oriented at almost any angle to the direction of 
anisotropy--deformation will consistently occur by pro- 
gressive simple shear parallel to the direction of the 
anisotropy. Stress trajectories inside anisotropic rocks 
may deviate from the orientation of the principal axes of 
bulk stress (see later). 

The tensor approach also yields a relationship 
between the bulk stress and bulk strain-rate (magnitude 
and orientation of principal axes) in terms of the viscosit- 
ies and thicknesses of the individual laminae of any 
viscous multilayer. The present paper adopts the aniso- 
tropy factor delta (6), introduced by Honda (1986), and 
expands its application to quantify how finite strain 
develops in a ductile medium for various degrees of 
anisotropy and arbitrary orientations of the bulk devia- 
toric stress. This relationship has not been elaborated in 
any previous study. 

PREVIOUS W O R K  AND PRESENT SCOPE 

* Present address: Earth Science Department, King Fahd University Past research on the role of mechanical anisotropy in 
of Petroleum and Minerals, 312 61 Dhahran, Saudi Arabia. ductile regimes has been fragmentary. Nonetheless, t w o  
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major schools can be distinguished: geophysical and 
geological. The similarity between the analytical 
descriptions of viscous and elastic deformation (cf. Biot 
1965) has been employed by both schools to transfer 
equations governing anisotropic elasticity to viscous 
flow in anisotropic media. Most earlier work is restricted 
to stratified media comprising thin planar layers of 
internally isotropic viscosity, so that the symmetry axis 
of the anisotropy of the multilayer itself is oriented 
perpendicular to the layering. The planar anisotropy is 
aligned with the convective streamlines in numerical 
models of mantle flow (Christensen 1987) and chevron 
folded in semi-numerical models of similar folding 
(Casey & Huggenberger 1985, Ridley & Casey 1989). In 
elastic literature this particular type of planar anisotropy 
has been termed "orthotropic" (Jaeger & Cook 1979) or 
"transversely isotropic" (Banik 1987). 

The theory of Backus (1962) concerning anisotropic 
elasticity has been adopted in preliminary attempts to 
model anisotropic flow in the Earth's mantle (Saito & 
Abe 1984. Honda 1986). The adapted geophysical 
theory applies to multilayers comprising thin parallel 
layers of ductile rock with different Newtonian viscosity 
separated by plane and coherent interfaces of no-slip. 
The aim of these studies is to find how the anisotropy 
affects the convective streamline pattern in the mantle. 
No inference was made about the relationship between 
principal axes of stress and strain-rate. The degree of 
anisotropy was characterized by a non-dimensional 
number 6. However, the nature of the anisotropy was 
limited to multilayers comprising repetitions of two 
different rheological components only and assumptions 
were made about the relative thickness and minimum 
viscosity contrast of the layers. 

Biot's (for references see Biot 1961, 1965) theories 
concerning buckling of orthotropic elastic multilayers 
have been transformed to multilayers with orthotropic 
viscosity profiles in the geological literature (Cobbold et 
al. 1971, Cobbold 1976, Johnson 1977, Cobbold & 
Watkinson 1981, Latham 1985). Research focused on 
the refraction of stress and strain across rheological 
interfaces within such multilayers (Bayly 1970, 
Str6mghrd 1973, Treagus 1973, 1981, 1983, 1985, 1988). 
Two valuable expressions have been derived for predict- 
ing the refraction of the principal stress axis orientation 
(Str6mghrd 1973, Treagus 1973) and the magnitude of 
the shear strain component either side of a rheoiogical 
interface (Cobbold 1983, Treagus 1983). These 
expressions are rederived here (see Appendix, 
equations A23 and A28) and complemented with sev- 
eral other equations of practical importance. 

Previous inferences about the mode of progressive 
deformation in orthotropic rocks were limited because 
(1) the degree of anisotropy was not quantified and (2) 
the viscosity was not formulated as a tensor quantity. 
The concept of a viscosity tensor has been outlined in 
work on anisotropic mantle flow (Honda 1986) and may 
be elaborated and applied to geological realms where 
development of finite deformation patterns is of inter- 
est. The rheological effects of anisotropy can be best 

characterized and quantified by the anisotropy factor 6. 
In many geological situations, the anisotropy may be in 
the form of a laminated, compositional multilayer, and 
how to determine the anisotropy factor for such multi- 
layers is derived here. The velocity gradient equations 
for anisotropic flow are then integrated and used to 
illustrate how the degree of anisotropy affects the mode 
of progressive deformation. 

BASIC ASSUMPTIONS 

Materials with anisotropic viscosity have an internal 
structure such that the effective viscosity is different for 
different modes of deformation. A simple geometry for 
such anisotropy occurs if the rheology is controlled by 
either a planar compositional layering or a penetrative 
foliation due to preferred orientation of crystal fabrics. 
In the following derivation of a constitutive flow law for 
orthotropic anisotropy, consider a laminated medium 
comprising several parallel layers a(= 1 . . . . .  q) of infi- 
nite lateral extent and internally isotropic viscosity. The 
multilayer has its plane of anisotropy perpendicular to 
the X-axis of a Cartesian co-ordinate system XT'Z (Fig. 
1). The deformation is due to biaxial incompressible 
flow in the XZ-plane which causes plane strain only. 
Consequently, the major and minor principal axes of all 
stress and strain-rate ellipsoids lie within the XZ-plane. 
Assume that the anisotropy remains planar, that no slip 
occurs along the interfaces, interracial tension is absent, 
the fluids are incompressible and fluid interfaces remain 
coherent throughout the deformation. 

The total state of stress at any point is described by 
three principal stress axes o~ -> 02 --> o3. It is important to 
distinguish clearly between total and deviatoric stress. 
Principal axes of total and deviatoric stress will remain 
parallel in both isotropic and anisotropic media. How- 
ever, the magnitude of the terms in the deviatoric part of 
the stress tensor Sij (whether bulk or local) are related by 
the tensor expression: 

rl',j = S,i + Pip, (1) 

"Cxx 

Fig. 1. Multilayer oriented with the layers of anisotropic viscosity 
parallel to the YZ-plane. The normal and shear components r/x x and 
r/x ~ of the viscosity tensor ~l,j are graphically represented by the ellipse. 
The ellipsoid representation is just an arbitrary visual tool to show the 
anisotropy orientation. The shear viscosity r/, z should not be confused 
with the normal viscosity ~Tz.., which has the same orientation, but 

different magnitude (i.e. r/z z = r/xx). 
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with deviatoric stress tensor Tq and hydrostatic stress 
t e n s o r  Pq = -P6q= --1/30kk6 q, taking 6q = 1 for i = j 
and 6ij = 0 for i # j. The boundary condition of plane 
strain requires that 02 = Pwhich implies o2 = (1/2)(ol + 
o3), so that: 

rl = ol - 02 = (1/2)(Ol - 03) (2a) 

r2 = 0 (2b) 

r3 = 03 -- 02 = (1/2)(O3 -- O1)- (2C) 

This assumes that the deformation is incompressible, 
and therefore the deviatoric stress r 1 = --r 3. The adjec- 
tive 'bulk' will be applied to denote quantities valid for 
the flow at length scales larger than the characteristic 
spacing of the laminae in the multilayer; i.e. those 
quantities directly related to forces exerted at the outer 
surface of the rock volume studied. The principal axes of 
stress and strain rate within any of the individual layers 
a(= 1 . . . . .  q) of the multilayer will all remain within the 
XZ-plane. 

To simplify the discussion, only deviatoric stresses will 
be considered in what follows unless stated otherwise. 
Assume that no deviatoric stresses other than those 
caused by the principal surface stress exist in the multi- 
layer, i.e. stresses due to primary and thermally induced 
density variations are excluded. The magnitudes of the 
normal and shear components of the deviatoric stress 
tensor cannot be constructed as vector quantities, but 
may be calculated from the two principal deviatoric 
stresses within the plane of flow using Mohr's equations 
(see Appendix). If the deformation is truly planar and 
remains in the XZ-plane, the bulk deviatoric stress 
tensor Ti/and strain rate tensor Dq are: 

I ° '<1 T;; = o (3) 
Lrx: 0 -rx.,. j 

[ G~ 0 Gz ] 
D,j= 10 0 0 ]. (4) 

[ b,.: 0 -ex, 

The only two independent components of the bulk 
deviatoric stress tensor and the strain-rate tensor are 
mutually related by the normal and shear component of 
the viscosity tensor rhi in: 

rxz] 2rlxzJ[bxzJ 

The bulk effective viscosity of a body with orthotropic 
anisotropy will vary with the orientation of the stress 
field applied, and therefore becomes a tensor quantity 
itself. The diagonal and two-suffix form of the viscosity 
tensor in expression (5) results from the choice of the 
YZ-plane parallel to the planes of anisotropy. Solutions 
for the viscosity tensor components in a multilayer with 
stepped rheology profiles will be derived below. The 
results will then be generalized for any orthotropic 
anisotropy and arbitrary orientations of the co-ordinate 
axes. 

Normal viscosity 

The relationship between the rxx-COmponent of the 
bulk stress tensor, the bulk pure-shear strain-rate bxx 
and the r/xx-component of the bulk viscosity tensor is (cf. 
equation 5): 

~1,~ = r==/26x. .  (6) 
Extrusion of any soft layers is inhibited due to infinite 
lateral extent of the multilayer and the no-slip condition 
at the interface with the adjoining layers (Fig. 2). Conse- 
quently, the normal strain-rates e~x(,) (for a = 1 . . . . .  q) 
within individual laminae of thickness d, in the multi- 
layer, must have a particular constant value equal to the 
bulk shear strain-rate ex=: 

exx = ex=(t) = e=x(2) . . . . .  exx<q). (7) 

The normal component azz (=-Oxx) of the total bulk 
stress is the mean of the stresses azz(,) in each of the 
individual layers of thickness d, in the multilayer divided 
by total thickness d: 

q 

o =  = ( l / d )  (Go=<,)) 
a = l  

q 

----- ( l / d )  Z (-P,, + 2rlaezz)da 
a = l  

(8a) 

o r  

q 

ozz = ( - l /d)  Z (P~ + 2rl'ex')d"" 
a = l  

(8b) 

d I orientation no s ~  

L '~ : : : : : : : : : s t i f f  

free-slip 

Fig. 2. Deformation of a simplified anisotropic multilayer by an 
oblique principal stress rl. The normal component of strain-rate in the 
soft and stiff layers may not remain equal if slip along the interfaces is 
possible, so that the soft layer will extrude (bottom). However, the 
normal strains and strain-rates will be equal in all layers if their 
interfaces have to remain coherent and rigid due to no-slip boundary 
conditions (top). The shear component of the strain-rate will always be 
different in the stiff and soft layers, i.e. higher in the soft layers, 
independent of the boundary conditions. Adapted from an illustration 

originally used for a different purpose by Suppe (1985, fig. 10-10). 
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The boundary condition at each interface is that the total 
normal stress tYxx = O~x(a) = axx(b), SO that: 

- P  + rxx = -P,~ + rxx(a) = --Pb + rxx(b). (9) 

The pressure will be different in layers of different 
viscosity, so that Pa ~ Pb. 

Using expressions (6) and (8a) together with (9) to 
eliminate P.  yields: 

r/x~ = ( i / 2 ) [ ( d J d )  r. xx(") + ' " +  ( d q / d )  T. x x - ~ ]  
exx(a) exx(q)J 

q 

= ) i  (r/ad*) (10) 
a=l  

with normalized thickness d* = d J d .  The viscosities r/. 
(for a = 1 . . . . .  q) of the individual layers in the multi- 
layer add up as in a series configuration of resistances in 
the expression for the bulk normal viscosity r/,,,. This 
means that the resistance to normal compression (with- 
out any extrusion of the softer layers) will be largely 
controlled by the stiffer layers (higher effective vis- 
cosity, higher resistance) of the multilayer. 

Shear viscosity 

The relationship between the r~z-component of the 
bulk deviatoric stress tensor, the bulk simple-shear 
strain-rate bx.. and the r/x:-component of the bulk visco- 
sity tensor is (cf. equation 5): 

rlx: = r~:120x._ = r~..17 (11) 

with tensor strain-rate 0~: and engineering strain-rate 7 
related by 0~. = 7/2. If one outer surface is fixed the bulk 
engineering strain-rate 7 is related to the velocity (v~) of 
the other outer surface of the multilayer by: 

7 = v , /d .  (12) 

The outer surface velocity itself is the sum of the veloci- 
ties in the individual laminae of the multilayer, which 
may all have different magnitudes: 

q q 

v~. = ~ d~(Ov~/Ox)~ = ~ (d3~). (13) 
a=l  a=l  

The boundary condition of no-slip at the interface 
implies that the shear stress rx~-t,) (for a = 1 . . . . .  q) is 
equal to the bulk shear stress r~. applied to drive the 
shear component of the flow: 

rr2 = Txz(1 ) = rx2(2 ) . . . . .  rxz(q ). (14) 

Insertion of equations ( 12)-(14) into (11) yields: 

r/x-, = ( rxA) / v_ ,  = rx.. 
(d~/d)7o + " "  + (dq/d)~q 

1 

d* 7o + . . . + d ~  7q 
rrz(a) rxz(q) 

, q 

= 1 / ~ ,  (d* /r /o) .  
/ 

a=l  

(15) 

The viscosities r/a (for a = 1 , . . . ,  q) of the individual 
layers in the multilayer add up in the same fashion as 
parallel resistances in the expression for the bulk shear 
viscosity r/~ z. This means that the resistance to simple 
shearing will be predominantly controlled by the softer 
layers (low effective viscosity, low resistance) in the 
multilayer. 

FLOW IN MULTILAYER WITH ANISOTROPIC 
RHEOLOGY AND ~ I T R A R Y  ORIENTATION 

IN CARTESIAN SPACE 

So far, the normal components of the bulk stress, 
viscosity and strain-rate tensors, rkk , r/kk and e k k  , r e -  

s p e c t i v e l y ,  have all remained parallel to each other due 
to the particular orientation of the reference frame in 
Fig. 1. If the plane of anisotropy has an arbitrary 
orientation with respect to the co-ordinate axes, the 
direction of normal stresses will not generally coincide 
with that of normal viscosities. The principal directions 
of the viscosity anisotropy are those connected to coaxial 
flow, either perpendicular or parallel to the plane of 
layering, both denoted by r/N, and the shear parallel to 
the layering is controlled by r/s. 

Assume that the plane of anisotropy has an arbitrary 
orientation in X Y Z - s p a c e .  The viscosity anisotropy can 
then be expressed in a fourth-order tensor r/ij kt which 
relates the second-order tensors Tii and Dkt in a gener- 
alized constitutive equation: 

T, = 2~1, 0/Dk/. (16) 

In a general three-dimensional flow, equation (16) rep- 
resents nine separate equations, containing 81 viscosity 
constants in total (cf. Nye 1957, p. 133), e.g.: 

rli = 2(r/11 11 0i~ + 7111 12012 + /711 13013 

+ r / l l  21 021 + q l l  22022 + r / l l  23023 

+ r/ll 31 031 + ~11 32 032 + r/ll 33 033). (17) 

For the two-dimensional incompressible flow con- 
sidered here, it is convenient to keep the Y-axis parallel 
to the plane of anisotropy and perpendicular to the plane 
of strain (Fig. 3). In this case there are only three 
independent components of r/ok! and the components of 
the stress and strain-rate tensors in the XZ-system are 
related by the expression: 

rx~-j 2r/xz x, 277 . . . .  JL0xzJ" 

The viscosity tensor is symmetric (r/O kt = r/kl if) SO that 
r/xx xz = r/xz xx. The viscosity tensor components of the 
principal viscosities r/N and r/s with respect to the X Z - c o -  
ordinates can be obtained using the transformation rules 
for fourth-rank tensors. If the X-axis is defined at an 
arbitrary angle tp with respect to the normal or pole to 
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the plane of anisotropy (Fig. 3) the viscosity components 
are: 

r/xx xx  = r / N  c O s 2  2~ + r/s sin 2 2~b (19) 

r/xz xz = r/N sin2 2# + r/s cos2 2@ (20) 

r/xx xz = (r/N -- r/s) cos 2~ sin 2qL (21) 

See also Cobbold (1976). Recall now that: 

q 

= ~ (r/~d*) (cf. equation 10) (22) r/N 
a = l  

/ ~ q  
= 1/~_~ (d*lr/a) (cf. equation 15). (23) r/s 

The ratio (r/s/r/s) of the normal and shear viscosities has 
been termed the anisotropy factor 6 (Honda 1986, p. 
1455, equation 8b): 

b = r/N/r/S. (24) 

This ratio of viscosity under shear and normal stress is 
sufficient to model anisotropic flow numerically. How- 
ever, for construction of anisotropic model analogues 
composed of internally isotropic muitilayers, it is necess- 
ary to apply the formulation as developed in the pre- 
vious section. It will be shown in the next section that the 
anisotropy factor 6 has a specific physical meaning in the 
sense that it is a direct measure of the difference in 
orientation of the principal axes of bulk stress and bulk 
strain-rate. 

INCLINATION OF BULK STRESS AND STRAIN- 
RATE AXES IN ANISOTROPIC MULTILAYERS 

The axes of principal stress and principal strain-rate 
remain parallel throughout the deformation history of 
flows of isotropic fluids. This is not the general case in 
the deformation of anisotropic multilayers. Within indi- 
vidual isotropic layers of such multilayers, stress and 
strain-rate axes remain parallel, but this is not generally 
true for the principal axes of  the bulk stress and bulk 
strain-rate ellipsoids (cf. Fig. A1). An expression de- 
rived below relates the angles between the principal axes 

. : : : : :" .,::::1 . : . : ."  

Fig. 3. Anisotropic muitilayer inclined to the X-axis but parallel to the 
Y-axis. The normal and shear components of the viscosity are denoted 
by r/N and r/s, respectively. The angle 0 is referred to in the co-ordinate 

transformation equations (19)-(21). 

of the strain-rate and stress ellipsoids of the bulk defor- 
mation. Additionally, expressions are derived for calcu- 
lating the magnitudes of the principal stresses and strain- 
rates within each of the individual laminae of the multi- 
layer, provided that the external stress field and viscosity 
parameters are known (see Appendix). The refraction 
or change in orientation of the principal stress and 
strain-rate axes across the interface between adjacent 
layers is an intrinsic property controlled by the viscosity 
ratio alone (see Appendix). Most equations derived are 
also applicable to deformation of rocks where the aniso- 
tropy is due to a mineral fabric of otherwise homogene- 
ous composition. 

Consider a multilayer which has its plane of aniso- 
tropy perpendicular to the X-axis (cf. Fig. 1). All of the 
deformation is within the XZ-plane and is governed by a 
plane strain-rate ellipsoid with the intermediate axis 
parallel to the Y-axis so that ~t = - ~ 3 .  The angle 
between the bulk principal stress axis rt and the pole to 
the plane of anisotropy (Fig. 4) can be expressed as 
(using rxx = "c I COS 2~ and rxx = rt sin 2~, see Appendix): 

cot 2~ = rx~/rxz. (25) 

Substitution of expression (25) into (A26) yields: 

~a = (1/2) tan -~ [(tan 2~)(r/N/r/a)]. (26) 

The angle ~p between the bulk principal strain-rate axis 
el and the plane of anisotropy (Fig. 4) can be expressed 
as (from the ratio of equations A9 and A10): 

cot 2v? = ~x~/ex~. (27) 

Substitution of expression (27) into (A32) gives: 

~0a = (1/2) tan - l  [(tan 2~p)(r/s/r/a)]. (28) 

The angles ~0a and ~, are measured from reference lines 
90 ° apart to take into account the fact that the largest 
stretch of the incremental strain ellipsoid, $1, is perpen- 
dicular to rl. Expressions (26) and (28) can therefore 

90 ° 

0 ° / ,5 0 ~u 9 0  ° 

Fig. 4. Plot illustrating the physical meaning of the anisotropy factor 
= r/N/r/s. (After Cobbold 1976, fig. 5. )If the material is isotropie (6 = 

I), then the axes of the stress and strain-rate ellipsoids will be inclined 
at similar angles (~ and ~p, respectively) with respect to any plane 
boundary, so that their principal axes will coincide. However, if the 
material is anisotropic with viscosity components r/N and r/s (so that b 

> 1), then ~ and ~p will generally be different. 
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be equated because ~ = ~ 0  a in isotropic layers 
a = 1 . . . . .  q, so that: 

tan 2~O/tan 2~ = qN/r/S. (29) 

Expression (29) demonstrates that the anisotropy 
factor d = ~?N/r/s can be used as a direct measure for the 
difference between the orientations of the bulk principal 
stress and strain-rate axes with respect to the plane of 
anisotropy. Figure 4 illustrates this physical meaning of 
b by plotting the orientation of the principal axes of the 
bulk stress and bulk strain-rate (see also Cobboid 1976, 
fig. 5). It appears that their respective axes coincide if r I 
is parallel, perpendicular or inclined at 45 ° to the plane 
of anisotropy. However, if the anisotropy factor is large 
(b > 100), the axes of the bulk strain-rate for the 
multilayer will generally remain consistently inclined at 
approximately 45 ° to the layering or anisotropy plane, 
irrespective of the orientation of the bulk stress axes, so 
long as the latter are not parallel or perpendicular to the 
layering. 

This quantitative result can be qualitatively under- 
stood in the following fashion. A strain-rate ellipsoid 
oriented at 45 ° to the bedding of the multilayer corre- 
sponds to the case of plane simple shear, which--in 
isotropic materials---occurs only if rl is inclined at 
exactly 45 ° with respect to the planes of motion. How- 
ever, the presence of a strong anisotropy (i.e. d > 100) 
apparently inhibits the multilayer deforming in any other 
fashion than by simple shear, unless two axes of the stress 
coincide with the plane of anisotropy. More specifically, 
an approximate progressive simple shear will always 
occur if the anisotropy factor d > 100 for any 0 ° < ~ < 
90 °. In constant strain-rate experiments with b~ oblique 
to the layering, the orientation .~ of r~ may wobble 
anywhere between 0 ° and 90 ° if d > 100 (Fig. 4). If the 
anisotropy is defined by a multilayer comprising laminae 
of finite thicknesses and internally isotropic viscosities, 
the magnitudes of ~lN and ~?s are given by expressions 
(22) and (23), respectively. 

DESCRIPTION AND VISUALIZATION OF 
PROGRESSIVE DEFORMATION 

Deformation occurring uninterrupted with time is 
termed progressive and implies a continuous sequence 
of configurations through which a body passes, unlike 
the general term 'deformation' which refers to the differ- 
ence in geometry of two distinct finite states of a body 
(Flinn 1962). Progressive deformation paths in isotropic 
rocks have been studied systematically (Ramberg 
1975a.b, 1986, Pfiffner & Ramsay 1982, Weijermars 
1991), but systematic study of progressive deformation 
in anisotropic rocks has not previously been attempted. 
The mathematical framework provided here makes it 
possible to quantify progressive deformation in terms of 
the anisotropy factor and orientation of the bulk princi- 
pal stress axis. 

Consider a block of material of anisotropic viscosity 
resting on a stable plane, termed the reference plane in 

T,l\.lnorma/ 
z  41,zz 

~ll~ , l:zx planar amsotropy 

Zxz t __ " " ] " - ' ' ~  
~..,_.~z_** ' ~ : . . i  . . . .  / [  

~ ' 3 ~  S ~ ~  D=l F33x 
II I FI~ F13 

Fig. 5. Definition diagram showing a section through the deforming 
unit volume and the angle ~ of the principal deviatoric stress q with 
respect to the normal to the reference plane. The anisotropy is parallel 
to the XY-plane and its intensity may be varied using scaling parameter 
d. The inclination 0 of the major axis of the strain ellipsoid, and its 
principal stretch S~ are used to quantify progressive deformation in 
Figs. 6 and 7(a)-(d). The inclination fl of the cube's side and its 
orthogonal height D are used to quantify progressive deformation in 
the absence of other strain markers as portrayed in Figs. 8 and 
9(a)-(d). The tensor elements Fl~, FI3 and F33 relate to physical 

lengths as indicated. 

what follows (Fig. 5). The reference plane coincides with 
the XY-surface and deformation occurs in the XZ- 
plane. Deformation is isochoric and homogeneous on 
the scale studied, which implies that the anisotropy is 
penetrative and uniform within the block. The math- 
ematical descriptions providing the framework to track 
progressive deformation have been discussed in detail 
elsewhere (Weijermars 1991). The movement path of 
any particle (x,,, y,,, zo) is described by the deformation 
tensor expression: 

(x, y, z) = F(x,,, 3% z,,) (30) 

with F the deformation tensor and (xo, y,, zo) and 
(x,y,  z) the position vectors of an arbitrary material 
particle before and after deformation. In the case of 
homogeneous plane strain in the XZ-plane, only four of 
the nine elements of the deformation tensor are non- 
zero if the X-axis is chosen parallel to a non-rotating, 
free-slip boundary to the deforming volume (Fig. 5). 
This detachment plane may be interpreted as a stretch- 
ing fault, using a new terminology for faults moving 
contemporaneously with ductile deformation of the wall 
rock (Means 1990). The four non-zero tensor elements, 
FII, FI3, F22, F33, may then be expressed in the following 
dynamic terms (Weijermars 1991): 

Ell = exp (~;,j) (31a) 

F¿3 = (2Z,,,:/k,.,) sinh (ex_J) (31b) 

F2_~ = 1 (31c) 

/:33 = exp (-/',.,.t). (31d) 

Expressions (31a)-(31d) were obtained by time- 
integrating the rate-of-displacement equations, and can 
be linked to the stress tensor as follows. The strain-rate 
components are linked to the stress by expression (18) 
and need to include the anisotropy factor b = r/N/r/s if 
applied to anisotropic rocks: 
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bxx = rxfl2qN (32a) 

exz = rxzl2rls = 6r,,z/2r/N. (32b) 

The normal and shear strain-rates can now be related 
directly to the orientation ~ of the principal deviatoric 
stress r~ with respect to the normal of the reference 
plane (Fig. 3), making use of the equations for the Mohr 
circle of stress for incompressible, two-dimensional flow 
(rxx = rl cos 2~ and r~ z = rl sin 2~): 

exx = ( r l  c o s  2 ~ ) / ( 2 q N  ) (33a) 

bx: = 6(rl sin 2~)/(2r/N). (33b) 

The variable matrix elements F11, F13, F33 in expressions 
(31) may now be rewritten by substitution of expressions 
(35a) and (35b): 

Ell = exp (Rt cos 2~) (34a) 

Fl3  = ( F i r  - F{ll)6 tan 2~ (34b) 

F2~ = 1 (34c) 

F33 = Fi-t 1 , (34d) 

where the only three independent variables are 6, aniso- 
tropy, ~, the angle between the smallest principal devia- 
toric stress r~ and the normal to the reference plane (Fig. 
5), and the non-dimensional time R t = ( t r l ) /2 r ]N.  Arbi- 
trary quantities are time t, major principal stress r~, and 
normal viscosity r/N. Positive angles of ~ are measured 
anti-clockwise from the normal to the reference plane. 

Expression (30), using tensor elements of expressions 
(34a)-(34d), is practical for forward modelling of pro- 
gressive deformation, using arbitrary stress orientations 

and normalized times Rt (cf. Weijermars 1991). Figure 
5 explains how the matrix elements Fl 1, F13 and Fs3 are 
physically expressed as the normalized dimensions of a 
model cube deforming along a detachment horizon 
acting as a reference plane. Two types of passive 
markers are considered: (a) spheres and (b) cubes (Fig. 
5). These will be discussed in turn. 

(a) Spherical markers 

The deformation history of spherical markers, or 
circles in the plane of strain, may be quantified in terms 
of the progressive changes in the length of the major 
stretching axis St of the evolving strain ellipse and the 
angle 0 measured between S~ and the reference plane 
(Fig. 5), The stretch St is intrinsic to the deformation 
tensor and is straightforward if the matrix elements Fit, 
F13 and F33 are known: 

S t = [0.5(K + [K 2 - 4]m)] I/-" (35a) 

with K = F~j + F23 + F]3, provided F3j = 0. The minor 
stretching axis $3 can be determined from the boundary 
condition of plane isochoric strain so that S~$3 = 1; the 
ellipticity or axial ratio is R = $11S3 = S 2. The angle 0 
between the finite strain ellipsoid major axis and the X- 
axis parallel to the reference plane is: 

0 = 0.5 arctan [(2Ft3F33)/(F21 + F23 - F23)]. (35b) 

The algorithms of expressions (35a) and (35b) were 
incorporated into a computer program to map the con- 
tinuous change of both $1 and/9 for any orientation ~ of 
the bulk principal stress axis with respect to the normal 
of the plane of anisotropy using various values for the 
anisotropy factor 6. In order to help explain the pro- 
found effect of anisotropy on the character of progress- 
ive deformation, it is first shown how $1 and 0 change in 
isotropic rock (6 = 1). Figure 6 graphs the relationship 
between the inclination angle 0 of the strain ellipsoid 
major axis (with respect to the reference plane) and the 
magnitude of the major stretch $1 for a set of values of ~. 
In isotropic materials, the axes of the ellipsoids for stress 
and incremental strain (or strain-rate) coincide so that 
0 = ~ at the onset of deformation. They will remain 90 ° 
apart, owing to the fact that S~ of the instantaneous or 
incremental strain ellipsoid is always perpendicular to 
r~. The subsequent evolution of finite strain and rotation 
of the strain ellipse is outlined by the nearly horizontal 
curves in Fig. 6. 

The plot of Fig. 6 is non-dimensional, except for the 
vertical isochrons. They are scaled for the particular case 
of rock with an isotropic viscosity of 5 × 102~ Pas  
deforming by a principal deviatoric stress of 100 MPa, 
corresponding to a characteristic strain-rate of 
10 -I4 s -i .  The isochrons are included in Fig. 6 to bring 
out clearly that pure shear is a mechanism much more 
effective than simple shear for achieving large strains for 
a given stress field. This applies only to isotropic rheolo- 
gies; the reverse holds for orthotropic viscosities where 
the plane of weakness lies in the shear direction (see 
below). 

Figures 7(a)-(d) are similar to Fig. 6, but show the 
change of 0 and $I for progressive deformation in rocks 
with anisotropy factors d = 2, 3, 5, 10, 25 and 100, 
respectively. The isochron patterns (using r/N = 5 x 1021 
Pa s and rl = 100 MPa) show that even for rocks with 
only weak anisotropy (6 = 2, Fig. 7a) pure shear is no 
longer more effective than simple shear for achieving 
large finite deformations. Deformation preferentially 
occurs by simple shear and accumulates faster for larger 
anisotropy factors. Even if the principal stress axis is 
close to orientations characteristic for nearly pure shear 
(e.g. ~ = 80 ° or 10°), deformation will tend towards 
simple shear rather than pure shear if 6 > 100 (Fig. 7d). 
In anisotropic materials, the principal axes of the ellip- 
soids for stress and incremental strain (or strain-rate) 
generally do not coincide (so that 0 ~ ~), even at the 
onset of the deformation. 

(b) Cubic markers 

The deformation history of cubic markers, or squares 
in the plane of strain, may be quantified in terms of the 
progressive changes in the orthogonal height of the 
square and the angle fl between the reference plane and 
an initially vertical marker line of the deforming square 
(Fig. 5). The height or orthogonal thickness of the 
square at any time t is equal to D = F33 as specified in 
expression (34d). Any initially vertical line of the cube 
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is, after deformation, inclined at an angle fl with respect 
to the reference plane: 

fl = tan-I  (FlllFI31). (36a) 

The algorithms of expressions (34d) and (36a) were also 
incorporated into a computer program to map the con- 
tinuous change of both D and/3 for any orientation ~ of 
the bulk, principal stress axis with respect to the refer- 
ence plane using various values for the anisotropy factor 
6. For completeness, the direct relationship between D 
and /3 follows from combining equations (34b) and 
(36a): 

cotfl  = O(D -l  - 1) tan 2~. (36b) 

For later comparison with the effect of anisotropy, it is 
first shown how D and fl change in isotropic rock (6 = 1) 
during progressive deformation. Figure 8 is a graph 
plotting the change in orthogonal thickness D of a 
deforming layer vs the change in angle fl of a marker line 
initially normal to the layer, for a variety of orientations 

of the principal stress axis. Layer thickening occurs for 
> 45 ° and thinning for ~ < 45 °, whilst it remains 

unchanged in simple shear (8 = 45°). Layer thinning is 
fastest for pure shear at _~ = 0 °, and fastest thickening 
occurs by pure shear at ~ = 90 °. Note that the concave 

downward 'bulge' in the isochron pattern indicates that 
the rotation of the cube's side is fastest for simple shear 
(~ = 45 °) at the onset of the deformation. However, a 
larger total strain accumulates in a given time for smaller 
values of ~. 

Figures 9(a)-(d) plot parameters similar to those of 
Fig. 8, but for rock with anisotropy factors 6 = 2, 3, 5 and 
10. It is obvious from comparison with Figs. 8 and 9(d) 
that for larger values of 6 it becomes increasingly diffi- 
cult to change the height (D) of the initial cube. If 6 is 
sufficiently large (dt > 100), all deformation will occur by 
simple shear, and initially vertical lines rotate faster 
away from the vertical for large 6. 

GENERALIZATION 

The main features concerning the effect of anisotropy 
on progressive deformation can be thought of in terms of 
the rate of layer thinning or thickening. Anisotropy 
affects the shape of particle movement paths and conse- 
quently the kinematic vorticity number W k. This re- 
lationship can be quantified as follows. The kinematic 
vorticity number (Means et al. 1980) can be written in 
terms of the normal and shear strain-rate components of 
deformation (Bobyarchick 1986, p. 41): 
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W k = cos (tan-1 (2k/7)). (37a) 

Since the engineering shear strain-rate 7/is related to the 
tensor shear strain-rate by 2T = kx~, expression (37a) can 
be rewritten as: 

Wk = cos (tan -1 (kxxlk~)). (37b) 

Combining expressions (33a) and (33b) yields exx/b~ = 
cot 2~/6, and substitution into expression (37b) gives an 
expression relating ~, the kinematic vorticity number 
Wk, and the anisotropy factor 6: 

W k = cos (tan- l ((cot 2~)/6)). (37c) 

It follows from expressions (32a) and (32b) that the ratio 
kxx/~,- remains constant, assuming a particular orien- 
tation of the principal stress axis with respect to the 
plane of anisotropy, even if the magnitude of q were 
varying over time. This complies with the requirement 
of steady state flow for the application of the kinematic 
vorticity number. 

Figure 10 graphs the relationship between the stress 
angle ~ and kinematic vorticity number W k for various 
values of 6. The orientation ~ of the principal deviatoric 
stress axis with respect to the normal to the reference 
plane is plotted along the horizontal axis of Fig. 10. The 
resulting kinematic vorticity number is plotted along the 
vertical axis. The curves in (~, Wk) space show which 

kinematic vorticity number arises in response to a par- 
ticular orientation ~ of r~. It illustrates that for ~ --- 45 °, 
Wk = 1 always so that the progressive deformation will 
be simple shear. For ~ = 0 °, W k = 0 pure-shear defor- 
mation always occurs, leading to layer thinning. W k = 0 
also for ~ = 90 °, but pure shear occurs in a fashion 
leading to layer thickening. In general, layer thinning 
occurs if ~ < 45 °, and thickening occurs for ~ > 45 °. The 
kinematic vorticity number can be used as a qualitative 
measure for the rate at which layer thinning or thicken- 
ing occurs. It follows from expression (37c) that the 
kinematic vorticity number varies with 6 for any particu- 
lar orientation 0 ° < ~ < 45 ° and 45 ° < ~ < 90 ° . Wk is 
always close to 1 if 6 is sufficiently large (6 > 100), 
provided that ~ ~ 0 ° or ~ ~ 90 °. 

Figure 10 implies that changes in layer thickness 
perpendicular to the plane of anisotropy are unlikely to 
occur if the degree of anisotropy is larger than 100. It 
also emphasizes that highly anisotropic rocks will de- 
form by approximately simple shear along the plane of 
anisotropy in almost all cases. Wk is always 0 (pure 
shear) for any 6 provided that ~ = 0 ° or 90 °, but this 
situation may be unstable, as the slightest deflection of 
in highly anisotropic rocks would lead to large W k and 
approximately simple-shear deformation. This effect 
may be further illustrated making use of the general 
stream function, xp, for anisotropic flow derived here 

9 
I s ta r t  

10'8 1 0 1 

. 

50*- 

time scale 

(MaJ 2 = 90 ° 3 6=1 

60 ° 

70 ° 

80* 

/' 
/ /" / / 

/ / / f ~  

J J  

4 

-6  

-7  

8 
-9  

r r ~  

0 1 13 2 3 

Fig. 8, Nomogram showing parameters characterizing progressive deformation of a passive rectangular marker in isotropic 
rock. Plotted is the relationship between the change in layer thickness (expressed as stretch D) and the rotation (fl) of a line 
initially orthogonal to the reference plane for various orientations ~ of the deviatoric stress. The angle fl is 90 ° at time 0. 
when deformation begins. The vertical line D = 1 shows that there is no change in layer thickness for simple shear. Note 
that, in pure-shear deformations, layer thinning or thickening does not involve a change in the angle/3, and therefore pure 

shear plots along the top line of the diagram. See also the definition diagram of Fig. 3~ 



Progressive deformation in anisotropic rocks 733 

12 

N 
II 

O 
I I  

t o  

o~  

o~ 
II 

t ~  

t d ~  
I |  A 

v 
o ~ 1 ~  " ~ t ~  , o  t ~  - 4  ~ t ~  e ~  ~ o 

Z 

a n  

o o 

H 

t t ~  

H 

t-~ 
II 

H 

e~ 

° 

~ 8  
.o 

e ~  

c-  
O 

E 

R 

i .  

O 

z 



734 R. WEIJERMARS 

without further proof (modified from the general stream 
function for isotropic flow derived in Weijermars & 
Poliakov (in preparation): 

= B ( x z  cos 2~ + 6z 2 sin 2~), (38) 

with scaling parameter  B = q/r /y.  Figures l l ( a ) - (d )  
show how the streamlines or particle movement  paths 
are affected by changing 6 and keeping ~ = 5 ° . In 
isotropic rocks (b = 1), the streamlines for ~ = 5 ° 
approximate those of pure shear (Fig. 11 a), but the same 
stress orientation in anisotropic rocks of b = 30 causes a 
flow pattern approximating that of a simple shear (Fig. 
l ld) .  

The most complete documentation of the effect of 
anisotropy makes use of the flow asymptotes (solutions 
of • = 0). These are two straight lines, of which one 
coincides with the plane of anisotropy and the other 
makes an angle a (making use of W k = cos a and 
equation 37c): 

a) 

a = tan- 1 ((cot 2~)/b). (39) c) 

Positive angles are measured clockwise from the plane 
of anisotropy, negative angles are measured anti- 
clockwise. Figure 12 effectively demonstrates that the 
two flow asymptotes coincide (i.e. a = 0 °, simple-shear 
flow) for almost any orientation ~ of r l ,  provided the 
anisotropy is sufficiently large (6 > 100). 

s imp le  shear  
1 

% 
,9 

.8 

.7 

5 

.5 

.3 

0* 10" 20* 30* t~0* 50* 60* 70 ° 80* 90* 

.2 

Fig. 10. The relationship bctwccn thc kinematic vorticity number  W k , 
anisotropy factor b. and angle ~ bctwccn the major principal stress axis 
and the normal to the plane of anisotropy, as expressed in equat ion 
(37c). Thc mode of progressive deformation (Wk) is entirely deter- 
mined by the angle of attack of the external stress field and the intrinsic 
anisotropy of any particular medium.  Deformation is restricted to the 
planc of view as thc deviatoric stress has no component  perpendicular 
to the plane of section. Note how similarly oriented stresses may cause 
different modes  of progressive deformation if the degree of anisotropy 

is different. 
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PRACTICAL IMPLICATIONS 

Some practical implications of the outlined theory of 
anisotropic flow are discussed below. The first section 
shows how variations in the degree of anisotropy may 
explain lateral variations in the amount of shear along 
ductile shear zones. The orientation of an anisotropy 
within a shear zone may determine the occurrence of 
either transpression or transtension. The next section 
explains how the intensity and orientation of anisotropy 
can explain why three different mechanisms of folding 
may occur. The final section yields practical implications 
for the formation of grain shape fabrics and hints for 
laboratory measurements of anisotropy factors. 
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Shear zones 

Shear zones are formed by progressive shear strain 
localized between two blocks of less strained host rock. 
It follows from the discussion above that the rheological 
nature of the rock affected by a shear zone will have a 
profound effect upon the nature of progressive defor- 
mation. Shear zones are layers of localized strain, and 
therefore these layers must be weaker (i.e. bulk viscosity 
less) than the host rock. The fact that shear strain 
profiles across major ductile shear zones typically show 
an exponential increase in the amount of shear towards 
the centre of the zones (cf. Simpson 1983, Weijermars & 
Rondeel 1984, Weijermars 1987a,b), can be explained 
by profound softening of rocks involved in the shear, 
either immediately before or during shearing, or both 
(cf. Fleitout & Froideveaux 1980, Poirier 1980). 

We may distinguish two types of shear zones, possess- 
ing either rheological stratification or anisotropy coin- 
ciding with the orientation of the shear zone (type 1, Fig. 
13a), or rheological stratification coinciding with the 
shear zone but with an internal foliation oblique to the 
direction of shear (type 2, Fig. 13c). The classification 
labels suggested here are entirely arbitrary and unlike 
previous classifications made on different grounds (cf. 
Means 1984). The mechanical behaviour of the two 
types of shear zones can be predicted by the present 
theory. Whether the width of a ductile shear zone 
increases, decreases, or remains constant during shear 
depends on the orientation and intensity of the aniso- 
tropy enclosed between the moving walls. This will be 
explained below. 

Type 1. The parts of Fig. 10 with 0 ° < ~ < 90 ° can be 
interpreted as illustrating how the rheological stratifi- 
cation of type 1 shear zones reacts to a tectonic stress 
field of a particular orientation. If the sheared layer is 
softer than its host rock, but internally still isotropic (i.e. 
6 = 1), transtension or transpression (cf. Sanderson & 
Marchini 1984) will occur for any principal stress in- 

90" 

4 5 "  . . . . . . . . . . . .  

0 ° 

+90" O" 0{, -90" 

Fig. 12. Plot of flow asymptote orientation, a,  with respect to the plane 
of anisotropy vs stress orientation, ~, for 6 = 1, 2, 5, 10 and 100, 

according to equation (39). 
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Fig. 13. Whether the width of a ductile shear zone will increase, 
decrease or remain constant during shear is controlled by the orien- 
tation and intensity of anisotropy enclosed between the moving walls. 
Two shear zones are illustrated, either enclosing strongly anisotropic 
fabrics, oriented parallel (a & b) and oblique (c & d) to the direction of 
shear. Progressive shear motion will involve no thinning in the shear 
zone with wall-parallel anisotropy (a & b). If thinning occurs in the 
shear zone, the length scales d and L in (c & d) remain constant during 
the shear motion. Reverse shear motion would involve thickening of 

the shear zone. The angle ~p is that used in equations (19)--(21). 

clined at angles smaller or larger than 45 °, respectively. 
However, if the rheological stratification defines a 
strong anisotropy parallel to the shear zone boundaries 
(i.e. 6 > 100), then approximate simple-shear strain will 
always occur irrespective of the orientation of the princi- 
pal stress axis (Figs. 13a & b). 

Note that variations in the amount of ductile shear 
strain across and along type 1 shear zones can be 
explained by variations in the intensity of the aniso- 
tropy. This follows from combining expressions (27) and 
(29), which yields: 

exz = ~xx 6 tan 2~. (40) 

Expression (40) implies that the shear strain-rate bx~ in 
any particular shear zone may vary according to spatial 
variations in the degree of anisotropy if the magnitude 
and orientation of the principal stress near the shear 
zone boundaries remain constant (so that ~xx wil be 
space invariant). A lateral increase in the anisotropy 
factor ~ will cause a proportional increase in the strain- 
rate. 

Type 2. Assume a shear zone composed of a softened 
layer with an internal foliation oblique to the direction of 
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shear as illustrated in Fig. 13(c). If the foliation is so 
penetrative that the anisotropy factor is larger than 100, 
the foliated layer can only deform by simple shear along 
the direction of the foliation, as long as the major 
principal stress axis is not perpendicular to the shear 
zone walls. Figure 13(d) shows how this leads to thinning 
and transpression of the rock volume involved in the 
shear motion. Reverse sense of shear would involve 
thickening and transtension of the shear zone. Foliations 
oblique to the boundaries of shear zones rotate continu- 
ously with respect to the external stress field. Figure 10 
illustrates how the mode of progressive deformation will 
vary as the kinematic vorticity number ranges between 0 
and 1 according to the orientation of the principal stress 
axis with respect to the plane of anisotropy. The magni- 
tudes of the normal and shear strain-rates of the rock 
between the shear zone boundaries at any time can be 
calculated by applying the set of equations (18)-(21), 
and (AI) and (A2). The angle q~ used in equations (19)- 
(21) is indicated in Figs. 13(c) & (d). 

Folding 

Variations in the geometrical details of folds have 
been extensively described for most of the world's tec- 
tonic provinces. The degree and orientation of aniso- 
tropy of rocks have figured in previous attempts to 
explain folding mechanisms (Biot 1961, Cobbold et al. 
1971). Nonetheless, little attempt has been made to 
explain how anisotropy may determine the development 
of various basic types of folds. The distinction between 
similar and parallel folds on the basis of geometrical 
features was introduced by Van Hise (1894), Similar 
/blds have constant layer thickness if measured parallel 
to the axial surfaces and parallel folds have constant 
thickness perpendicular to the layer along the fold 
profile (cf. Ramsay 1967, p. 367). One explanation 
for the formation of similar folds involves differential 
simple shear of layers along parallel flow lines (Fig. 14, 
after Carey 1962). Parallel folds may be formed by 
tangential longitudinal strain or flexural flow. These 
three folding mechanisms can be distinguished in the 
field on the basis of characteristic distribution patterns of 
refolded lineations (Hobbs et al. 1976) or on the basis of 
strain distribution. It is first explored below how aniso- 
tropy may control the occurrence of each of these three 
folding mechanisms. 

( 1 ) Differential simple shear. The layers outlining the 
similar folds of Fig. 14 act merely as passive markers and 
have no significant mechanical influence. In this 
approach there is no shortening normal to the 
streamlines--this is a true shear flow--in contrast to 
alternative mechanisms discussed by Hudleston (1977, 
1983). The problem with Carey's (1962) model for 
explaining the formation of similar folds is that differen- 
tial simple shear along the streamlines would require 
velocity and strain-rate gradients across the fold profile. 
Such a differential shear is physically impossible in 
isotropic media but could be explained by the spatial 

variations in the degree of anisotropy as described in 
expression (40). Recall Fig. 10 and conclude that a 
strong anisotropy is simultaneously an efficient mechan- 
ism to force simple shear and hinder layer-parallel 
shortening. 

(2) Simple shear flexure and pure tangential strain. The 
two mechanisms currently available to explain the for- 
mation of parallel folds (see later) both imply that the 
initial thickness of the folded layer remains unchanged 
after folding. This suggests that parallel folds are usually 
formed in competent layers which do not change length 
in layer-parallel compression. A question which has 
remained unanswered in the geoscience literature is: if 

Fig. 14 ldcal similar folds, lormcd by diffcrcntial simple-shear flow, 
involve no shortening normal to the flow lines. Layers act principally 
as passive markers. The differential simple shear may be explained by 
spatial variations in the degree of anisotropy parallel to the direction of 

flow (from Jackson 1985. after Carey 1962). 
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Fig. 15. (a) Parallel fold formed by tangential longitudinal strain 
(TLS). This type of parallel folding may only occur in competent layers 
of isotropic viscosity. All strain is due to progressive pure-shear strain 
with a component of finite rigid-body rotation. Domains of compres- 
sion and tension are separated by neutral surfaces of zero strain 
(adapted from Ramsay & Huber 1987. fig. 21.18). (b) Non-concentric 
parallel folds can only form by flexural shear flow in competent layers 
if these possess a strong layer-parallel anisotropy. The layer has been 
shortened to 70% by flexural shear flow. whilst the orthogonal 
thickness of the layer remains unchanged (adapted from Ramsay & 

Huber 1987. fig. 21.3). 

parallel folds in competent layers can develop by either 
flexural flow or tangential longitudinal strain, then what 
determines which mechanism occurs? An explanation is 
offered below. 

Tangential longitudinal strain (Ramsay 1967, p. 398, 
Ramsay & Huber 1983) confines deformation within the 
competent layer to progressive pure-shear strain with 
tangential and radial principal strain trajectories (Fig. 
15a). The current distinction between concentric and 
non-concentric parallel folds was created on a drawing 
table and has no mechanical implication. In nature strain 
compatibility rules invariably force natural parallel folds 
into non-concentric shapes. This is because the differ- 
ence of finite strains along the inner and outer arcs 
between two inflection points increases gradually such 
as to reach maximum values in the axial plane of the 
fold. This implies that folds formed by tangential longi- 
tudinal strain (TLS) can never be truely concentric, and 
will have non-concentric shapes as illustrated in Fig. 
15(a). The neutral surface along the layer is crossed by 
perpendicular neutral surfaces at the inflection points. 
This mechanism may operate if the competent layer 
itself is isotropic. Stresses inside the competent layer are 
then always refracted towards perpendicular orien- 
tations with respect to the interface of competency 
contrast, irrespective of the orientations of the external 
stress (expression A28). 

Another mechanism for forming parallel folds is flex- 
ural flow. The deformation pattern produced by flexurai 

flow can be visualized by flexing a stack of computer 
cards marked with strain circles on the edge (Fig. 15b). 
This causes a progressive simple-shear deformation with 
flow along the interfaces of the cards. This simple-shear 
flow implies that the principal stress axes are consist- 
ently oriented at 45 ° to the surface of flow. Penetrative 
flexural flow or simple shear along the folded surface 
therefore implies a strong anisotropy parallel to the 
layering. More specifically, analytical theory on aniso- 
tropic flow predicts that, if the degree of anisotropy is 
sufficiently large (e.g. 6 > 100) the principal strain rate 
axes will always be inclined 45 ° to the plane of aniso- 
tropy, irrespective of the orientation of the principal 
stress axes (as long as the bulk principal stress axis is not 
perpendicular to the anisotropy). Conversely, flexural 
shear flow in a competent layer is unlikely if the internal 
anisotropy factor 6 is much smaller than 100. 

Rheology measurements and foliation development 

If the anisotropy of rocks is defined by a penetrative 
foliation (e.g. preferred orientation of grain shape) then 
the magnitude of the principal viscosities r/N and r/s in 
the anisotropy factor 6 = r/N/r/s cannot be obtained 
analytically. These have to be measured in biaxial lab- 
oratory tests with the anisotropy of the samples oriented 
perpendicular and at 45 ° to the principal compression 
direction, respectively. Unfortunately, too few labora- 
tory measurements on the rheoiogy of anisotropic rocks 
are available, the work of Paterson & Weiss (1966) being 
a notable exception. Their creep measurements of a 
fine-grained phyllite suggest an anisotropy factor of 6 = 
2. Many of the samples, sawn free from the jackets after 
their creep tests, show the development of kink bands. 
Expression (40) predicts nucleation of such kink bands 
by lateral variations in strain rate associated with spatial 
variations in 6. 

One major problem with laboratory creep tests in 
attempting to determine the rheoiogy of anisotropic 
materials is that the plane of anisotropy rotates with 
respect to rl during simple-shear stress measurements 
(Fig. 16). However, this rotation problem becomes 
increasingly irrelevant for larger, retrospectively deter- 
mined, anisotropy factors 6. This effect is particularly 
insignificant for 6 larger than, say 100, because the 
principal strain-rate axes will remain inclined at 45 ° with 
respect to the plane of anisotropy, hence maintaining 
the deformation by effective simple shear only, even if rl 
is no longer at 45 ° with respect to the plane of aniso- 
tropy. Consequently, this theoretical insight may help to 
overcome what was addressed by Wenk et al. (1986, cf. 
Paterson 1987) as a serious obstacle to creep tests 
quantifying the rheology of anisotropic rocks and miner- 
als. 

One new implication of the present theory for folia- 
tion development arises from the concept that progress- 
ive deformation of anisotropic rocks is favourably con- 
fined to simple shear in the plane of anisotropy. Any 
isotropy defined by a grain shape fabric will therefore be 
self-enhancing, because the angle between the long axis 
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Fig. 16. Section parallel to the compression piston of a creep apparatus 
and perpendicular to the plane of anisotropy of rock sample. (a) The 
shear component r/s of the anisotropic viscosity can be determined in 
such creep apparatus applying a maximum shear stress, so that ~ = 45 ° 
at the onset of the experiment. (b) The angle ~ will become progress- 
ively smaller during the axial shortening of the rock specimen, but 
this hardly affects the estimate of r/s if the anisotropy factor 
r3 = (rlN/r/s) > 100. The normal viscosity component r/N can be 
measured without any geometric complications by orienting the folia- 
tion perpendicular to ri and the piston axis (adapted from Wenk et al. 

1986, fig. 1 ). 

of any discordant grain and the direction of shear will 
monotonically decrease during progressive simple 
shear. If the boundaries of initially equidimensional 
grains were to act as passive markers, grain shape fabrics 
will stay perfectly aligned with the finite strain ellipsoid 
until obliterated by recovery or static recrystallization. 
The progressive deformation of passive unit spheres by 
simple shear (isochoric, plane strain) indicates that their 
major stretching axis $I is inclined at 45 °, 25 °, 20 ° and 10 ° 
with respect to the direction of shear for S~ = 1,2, 3 and 
6, respectively (Fig. 6 and Weijermars 1991). Thin 
sections of halite polycrystals deformed in bulk simple 
shear indicate that the crystals indeed tend to align with 
the orientation of maximum elongation (Shimamoto 
1989). Treagus (1983, 1985, 1988) noted that cleavage 
refracts across the layer interface in isotropic rocks in a 
fashion similar to that predicted by theory on strain 
refraction. This view is challenged by experimental 
observations on a mixture of salt and mica flakes sub- 
jected to a bulk pure-shear deformation (Hobbs et  al .  

1982, 1985). In this experiment, the mica flakes were 
passive markers which could only rotate and fracture, 
whereas the salt grains deformed by grain boundary 
migration so that the final grain shape was due to at least 
two mechanisms. The mismatch between the trace of the 
strain ellipsoid major axis and the foliation trace was up 
to 30 °. Real-time observations of transparent polycrys- 
tals deforming under the microscope also show that 
grain boundaries are not passive markers (Means 1989), 
but there is a clear tendency for alignment of the grain 
shapes with the major bulk strain axis. In other words, 
once a foliation develops, the degree of anisotropy 6 
defined by the foliation is likely to increase, until the rate 
of finite strain accumulation--which decreases with in- 
creasing strain--is outpaced by recovery rates. If a 
balance between strain fabric formation and recovery is 
reached, the concept of steady-state foliation may be 
applied (Means 1981) and the anisotropy factor 6 will 

reach a constant value. The extensive literature on 
cleavage development has been reviewed elsewhere 
(Siddans 1972, Means 1977, Oertei 1983). 

CONCLUSIONS 

The possible effect of any anisotropy on the rheologi- 
cal behaviour of rocks has previously been largely neg- 
lected, simply because practical analytical methods to 
describe such flows were not available. An adequate 
description of anisotropic flow is possible including the 
normal and shear components of viscosity (r/N and r/s, 
respectively). The components of the viscosity tensor, in 
any muitilayer comprising individual layers of isotropic 
viscosity and resolvable thickness, can be calculated on 
the basis of the intrinsic thickness and viscosity profile 
alone (equations 19-23). The effective viscosities of the 
individual layers add up like resistances in series and 
parallel in the normal and shear viscosities, respectively. 
Consequently, the resistance to normal compression will 
be largely determined by the competent layers, whereas 
the resistance to shear will be controlled by the soft 
layers. 

The degree of anisotropy in any fluid with a rheologi- 
cal structure representable by a normal and shear vis- 
cosity can be concisely expressed by the anisotropy 
factor 6 -- r/N/r/s. This ratio of the principal viscosities, 
initially defined entirely on arbitrary grounds (cf. Honda 
1986), appears to have a specific physical meaning. It 
expresses a measure for the potential misfit in the 
orientation of the principal axes of the bulk stress and 
strain-rate ellipsoids (equation 29). For example, the 
bulk strain-rate ellipsoid will remain consistently in- 
clined at very nearly 45 ° to the plane of anisotropy, for 
any orientation of the bulk stress ellipsoid oriented 
oblique to the layering, provided that the anisotropy 
factor 6 > 100 (Fig. 4). This means that a strongly 
anisotropic medium may only deform by essentially 
simple-shear flow constrained within planes normal to 
the anisotropy, and the direction of flow parallel to the 
anisotropy. 

These results were further tested in an analytical 
model showing progressive deformation of a unit vol- 
ume for various anisotropy factors and arbitrary orien- 
tations of the principal deviatoric stress. Progressive 
deformation may be predicted by integrating the rate-of- 
displacement equations over time and making proper 
use of the anisotropy factor 6. The results are visualized 
in a series of nomograms showing the evolution of finite 
strain and rotation for various degrees of anisotropy 
(Figs. 6-9). The effect of anisotropy upon the mode of 
progressive deformation can best be visualized by the 
relationship between the anisotropy factor, the kinema- 
tic vorticity number, and the principal stress orientation 
(Fig. 10). The derivation of equations governing aniso- 
tropic flow provides a basis to explain a variety of ductile 
deformation processes in nature involving stress and 
strain refraction (see Appendix). 

Practical implications of this theory for anisotropic 
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flow have been illustrated for progressive deformation 
in shear zones, folds and foliation development. For 
example, any shear zone with a strong internal aniso- 
tropic fabric parallel to its walls may only deform by 
simple shear. In contrast, a strong internal anisotropic 
fabric oblique to the walls implies that the deformation 
may involve either transpression or transtension, de- 
pending upon the orientation of the principal stress axis. 
The formation of similar folds may be explained by 
differential simple-shear flow due to spatial variations in 
the degree of anisotropy. Single competent layers will 
fold by tangential longitudinal strain if internally isotro- 
pic. Such layers will fold by simple-shear flexure if they 
possess a strong layer-parallel anisotropy. Real folds 
probably develop by a mechanism intermediate between 
the two idealizations. Considerations involving the 
mechanical effects of anisotropic flow lead to the con- 
clusion that grain shape fabrics are self-enhancing until 
steady-state is reached by the counteractive effect of 
recovery processes. 
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APPENDIX 

REFRACTION OF STRF..~ AND STRAIN-RATE AXES AND MAG- 
NITUDE OF STRESS AND STRAIN-RATE IN ANISOTROPIC 

MULTILAYERS 
Expressions are derived below to aid further application of the 

general equations of flow for orthotropic anisotropy to practical 
situations. These expressions include simple formulae for calculating 
the magnitude of the principal stresses (Section A. 1) and strain-rates 
(Section A.2) within all the individual laminae of a muitilayer, pro- 
vided that the external stress field and viscosity are known. The 
refraction or change in orientation of the principal stress and strain- 
rate axes across the interface between adjacent layers appears to be an 
intrinsic property controlled by the viscosity ratio alone (Sections A.3 
and A.4). Equations are also derived for determining the angles 
between the principal axes of bulk strain-rate and bulk stress to the 
principal axes in individual layers of a multilayer (Section A.5). 

A. 1. Magnitude of principal stresses within individual layers of 
anisotropic multilayers 

The magnitude of the principal stresses, and the normal and shear 
components of the stress within any individual lamina a (= I . . . . .  q) of 
a multilayer can be analytically calculated. The method applied 
depends upon whether the multilayer is deformed under a constant 
bulk stress (case I, r I orientation and magnitude fully known) or a 
constant bulk strain-rate (case II, ~ orientation and magnitude fully 
known). 

(I) First consider the case in which a multilayer is subjected to a 
constant bulk deviatoric stress r I , applied at an arbitrary angle ~ to the 
normal to the multilayer (Fig. A1). The magnitudes of the bulk normal 
and shear stresses on the plane of anisotropy are related to the 
principal deviatoric stresses by the equations for the Mohr circle of 
stress (cf. Means 1976): 

i X 

I 
I 

I ' o  
I 20 

0.1 
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i 5 ~ , o  ° 

: I 01 ,-J~':o ° 

Fig. A1. Illustration of the application of the refraction equations 
developed in the Appendix. The multilayer comprises 10 beds of equal 
thickness, so that d~' = d~' 0 = 0.1. The magnitude of their normalized 
effective dynamic viscosities (r/~* = r/Jr/o ) is indicated on the layers. 
The normalized normal and shear viscosities are 

I(I 10 

7 " " - r/~ = r/~* d,* = ,9 and r/.~ = : (d~/r/~ ) - 0.5, respectively. 
t / = l  / a ~ l  

The anisotropy factor di = 4. The angles ~ and ~p characterize the 
orientation of the principal axes of the bulk stress and strain-rate as 
indicated. The relationship between the bulk angles ~ and ~, is given in 
expression (29). Bulk angles ~ and ~/, are related to angles ~, and ~, 
within the multilayer layers by equations (A35)-(A38). Internal re- 
fraction is according to expression (A33). Note that there is no 
difference between ~, and ~,, (for a = 1-10) due to the isotropic nature 
of the effective viscosity within the individual layers of the multilayer. 

Inspired by fig. t0 of Treagus (1983). 

?1 - r3 sin 2~. (A2) r x :  = 7~ 

In incompressible biaxial flow r~ = - r3  so that equations (A1) and 
(A2) yield: 

r x ~ = r  tcos2~, r ~ = - r  3cos2~ (A3) 

r~. = r I sin 2,~• rx: = r3 sin 2~. (A4) 

Consequently, the magnitude of the bulk rxx and rxz are known, 
because they are related to the magnitude of r t by expressions (A3) 
and (A4). 

The magnitude of rxx(, ) and rxz~o ) in any of the individual laminae 
a(= 1 . . . . .  q) of the multilayer can be calculated from the normal and 
shear components of the applied bulk stress and the intrinsic material 
properties r/o and d~ : 

rx.~.~ = r~: (A5) 

r,xw) = r,.,~/a/r/N = r ~ x r / . / ~  (r/,do*) (A6) 
a ~ l  

because rx~(~) = 2r/~k~t~) = 2r/abxx, and e~ = rx~/2rlx x = rxx/2r/N. 
The principal stresses rt(~) and r3(a) within laminae can then be 

calculated from the normal and shear stresses rxx(~ ) and r~zt~ ~ by the 
equivalent of equations (A3) and (A4): 

r.~,) = rl~) cos 2~,, r ~  = -r3(~) cos 2~j~ (A7) 

r~ ,~  = rlt,~ sin 2~,, rx:(~) = -r3(a) sin 2~.  (A8) 

(I1) Secondly, consider a case in which a bulk strain-rate i, I is applied 
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at an arbitrary angle to the multilayer. The magnitude of the bulk i~x 
and ix: are also known because they can be calculated from k~ and the 
angle q, between b3 and the plane of anisotropy (Fig. A1): 

bxx = k~ cos2g', exx = - e 3 c ° s 2 ~  (A9) 

b~ = b~ sin 2g,, dxz = -ha sin 2~P. (A10) 

The magnitude of r u(a) and rxz~. ) can now be calculated from the bulk 
strain-rate components exx and e~z by: 

fix(a) = 2r/~x(a) = 2qa~xx (Al l )  
q 

rx~(,) = rx~ = 2~x:q.¢ = 2k.zt/s = 2 e x z / L  (d: /no) .  (A12) 
/ 

a = l  

Subsequently, the principal stresses r~(a) and r3(a) within the layers 
a(= 1 . . . . .  q) can be obtained by applying equations (A7) and (A8). 

Note that if Vxx(,, ) has been calculated, rxx(q) of any other layer can 
simply be found from the viscosity ratio (cf. equations A6 and Al l ) :  

r~(,)/r~x(q) = rlalrlq. (A13) 

A.2. Magnitude of  principal strain-rates within individual layers of  
anisotropic multilayers 

Again, consider a multilayer which has its plane of anisotropy 
perpendicular to the X-axis. All of the deformation is within the XZ- 
plane and governed by a plane strain-rate ellipsoid with the intermedi- 
ate axis parallel to the Y-axis so that bl = -ca.  The magnitude of the 
principal strain-rates, and the normal and shear components of the 
strain-rate in any individual layer a of the multilayer can be analytically 
obtained. The method depends, again, upon whether the multilayer is 
deformed under constant bulk stress or constant bulk strain-rate. 

(I) If a constant bulk stress is applied, the magnitude of the normal 
and shear components of principal strain-rate in layer a can be 
calculated analytically from rx~, rx: (obtained from rl by applying 
expressions A3 and A4), and the intrinsic material properties r/~ and 
d: according to: 

q 

~xx(a)=~xx=rxx/2qN=rxx/(2Z(~lad*))  (A14) 

bxz(,, ) = rxaa)12rla = rxzl2~la. (A15) 

Subsequently, the principal strain-rates el(a ) and ~3(o) within the layers 
a (=l  . . . . .  q) can be obtained from the normal and shear strain-rates 
~(~) and exz(~), according to: 

bxx(~ ) = k,(~) cos 2V~, bxx(,,) = -/3(,) cos 2 ~  (AI6) 

dxz(a) = el(a) sin 2~p~, exz(a) = -b3(~) sin 2Va. (AI7) 

(II) If a constant bulk strain-rate is applied, then i?xx(a ) and ex~(,) 
in layer a can be obtained from exx, exz (obtained from b~ by applying 
expressions A9 and A10). and the intrinsic material properties q,, and 
d* according to: 

e~x(a) = e~, (A18) 

q 

because ex~(,) = r~:(a)/2r/a = rx}2r/, and rx~ = 2qxzb~ = 2qsb~z. 
Subsequently the principal strain-rates el(a) and ~'3(a) within the 

layers a(= 1 . . . . .  q) can be obtained by applying equations (A16) and 
(AI7). Note that if ex~(a) has been solved, exztq) of any other layer can 
be found from (cf. equations A15 and A19): 

bxz(,,)l~.xz(q ) = qqlrla. (A20) 

A relationship for the refraction of the incremental strain axes across 
any rheological interface can be deduced by integrating expressions 
(A18) and (A19) over time. respectively: 

exx(a ) = exx tq)  = exx  (A21) 

exzta) = ex._~]slrla (A22) 

o r  

exz(,, ) = exz(q ) = rlqlrla. (A23) 

Expression (A23) has been obtained independently by both Cobbold 
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(1983) and Treagus (1983). Current views on the relationship between 
strain refraction and cleavage development have been discussed by 
Treagus (1981, 1983, 1988). 

A.3. Inclination angles of  principal stress axes within individual layers 
of  anisotropic muhilayers 

Imagine a multilayer which has its anisotropy perpendicular to the 
X-axis. The angle ~a between the principal stress axis rlt~) and the 
normal or pole of any layer a (Fig. 4) can be expressed as (from the 
ratio of equations A7 and A8): 

cot 2~  = r~to)/r~zw). (A24) 

For comparison, the relationship between the total principal stress and 
the angle ~a is (Turcotte & Schubert 1982, p. 84. equation 2-51): 

cot 2~, = (o~(~) - O~z(a))12oxz(,,). (A25) 

Combining expressions (A24) and (A25) and using rxz(a ) = Oxz(a ) yields 
r I = (1/2)(ol - o3), which is consistent with expressions (2a) and (2c). 

Substitution of the expression for the magnitudes of rxs(~) and Vxz(a) 
obtained in Section A. 1 into (A24) gives: 

cot 2~  = (rxxl~xz)(Tla/qn) (A26) 

for deformations involving constant bulk stress, and 

cot 2~  = (dx~lb~z)(rlalrls) (A27) 

for deformations due to application of constant bulk strain-rates. 
It follows from equations (A26) and (A27), that the angles ~ and ~q 

between the plane of anisotropy and the principal stress directions in 
any pair of layers a and q are related by their viscosity ratio only: 

cot 2~/cot 2~q -- ~/a/%- (A28) 

It is noteworthy that this expression has previously been derived 
independently by both Str6mg6rd (1973) and Treagus (1973), but 
without reference to any relationship with the bulk stress axes or the 
tensor properties of the bulk viscosity. 

Note also that: 

cot 2~a/cot 2~q = (r.u(,)" rxz(q))/(rxx(q)" rx~a)) 

= (r~(~). rx:)/(rx~(q)- r~) 

= rxx(a) lrxx(q)  (A29) 

which independently confirms the validity of expression (A13). 

A.4. Inclination angles of  principal strain-rate axes within individual 
layers of  anisotropic muhilayers 

Consider a multilayer with its plane of anisotropy oriented consist- 
ently perpendicular to the X-axis. The angle g,. between the principal 
strain-rate axis hi(.) and the boundary of any layer a (Fig. 4) can be 
written as (from the ratio of equations A16 and AI7): 

cot 2~a --- ~xx(a)/bx~(,, ). (A30) 

Substitution of the expressions for the magnitudes of exx(,,) and bx.t. ) 
obtained in Section A.2 yields: 

cot 2~,~ = (rxxlrxz)(rlal~n) (A31) 

for deformations involving constant bulk stress, and; 

cot 29'~ = (dxx/ixz)(~lahlN) (A32) 

for deformations due to application of constant bulk strain-rates. 
It follows from equations (A31) and (A32) that the angles ~p. and ~pq 

between the plane of anisotropy and the principal strain-rate direc- 
tions in any pair of layers a and q is related by their viscosity ratio only: 

cot 2~pJcot 2g, q = qahlq. (A33) 

Note also that: 

cot 2~PalCOt 2~q = (exx(a)" exz(q))l(exx(q)" bx:(a)) 

= ~x.(q)/~z(o) (A3a) 

which independently confirms the validity of expression (A20). 

S 14:6-~I 
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Figure A2 shows the variation of the angles ~ and ~v across the 
interface between a competent  (subscript c) and incompetent  (sub- 
script i) layer with effective viscosity contrast r/c/r/i. Note that large 
viscosity contrasts (i.e. r/c/r A > 100) imply that the soft bed will always 
have angles ~i = ~0i = 45°, irrespective of the orientat ion of ~ and ~v¢ in 
the competent  bed, provided that 0 ° > ~c > 90°. 

A.5. Inclination angles o f  stress and strain-rate axes in individual 
laminae related to bulk angles for  multilayers 

The angles Ca and ~p, of inclination of the principal stress and 
strain-rate axes within any individual layer a (=  1 . . . . .  q), respectively, 

90 ° 

Oi ~ qc 

/+50 ] "r~ I el 

i 

0 ° ~5 ° ~i Wi 90 ° 

Fig. A2. The refraction of the principal axes of the ellipsoids of stress 
and strain-rate across an interface separating a competent  (c) and 
incompetent  (i) layer quantified in terms of the angles ~5 and ~/,. Plotted 
in the diagram are curves for various viscosity contrasts r k / r  A between 
the competent  and incompetent  beds. See also Section A.4 and 

Fig. A1. (After  Treagus 1973, fig. 3.) 

are also related to those of the bulk stress and strain-rates (i.e. ~ and V;) 
in a very simple fashion. Substitution of expression (25) into (A26) and 
(A31) gives, respectively: 

cot 2~a/cot 2~ = r/a/r/N (A35) 

cot 2~'~/cot 2 v, = rlJr/N. (A36) 

Substitution of equation (27) into (A27) and (A32) yields, respect- 
ively: 

cot 2~o/cot 2~v = ~l, his (A37) 

cot 2~,a/cot 2~t, = v/Jr/s. (A38) 

Note that the validity of expression (29) can be confirmed indepen- 
dently by dividing either expression (A35) by (A37) or (A36) by 
(A38). Rule (A28) can also be obtained by using expressions (A35) or 
(A37), and rule (A33) follows from expression (A36) or (A38). 

Combining expressions (A35) and (A38) yields: 

cot 2~Va/cot 2 ~  = (cot 2g,/cot 2~)6. (A39) 

The principal axes of stress and strain-rate will be parallel within the 
individual laminae of isotropic viscosity, so that cot 2 ~ / c o t  2P, a = 1. 
Insertion of this boundary condition in expression (A39) gives: 

tan 2~/,/tan 2~ = 6. (A40) 

which is similar to expression (29). Reflection on these results reveals 
that knowledge of only one of the angles ~j~, ~, ~o~, ~ and of the intrinsic 
material properties 6, r/N, r/s and ~/~ is sufficient to solve for the other 
three angles. 

CORRIGENDA 

Two minor  printing errors occurred in expressions (10) and (A8) of 
the companion paper  (Weijermars 1991). In expression (10), the 
tensor element FI3 misses the left-hand bracket and should read 
(2exz/exx) sinh (e~d). In expression (A8),  tensor  e lement  F22 should 
read 1 and not 0. 


